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A least-squares threshold diagonalization algorithm is presented. The salient features 
of the algorithm include an internally computed series of threshold values which optimize 
convergence and an input parameter to simplify programmatic control of the precision of 
the calculated eigenvectors. The optimized threshold method is from 30 to 40% faster 
than the most efficient Jacobi diagonalization routines and is roughly 20% faster than 
previous threshold methods. Furthermore, the algorithm requires no allocation of addi- 
tional work arrays. 

1. INTRODUCTION 

The diagonalization of Hermitian matrices using a succession of plane rotations 
was originally conceived by Jacobi [l]. The Jacobi method has the advantage of a 
relatively simple algorithm which is fail-safe when properly programmed. It has the 
disadvantage of a time-consuming iterative process and the roundoff error that 
accompanies the large number of matrix rotations frequently required. The avail- 
ability of more sophisticated algorithms [S-6], such as the Givens-Householder 
method [5], has primarily limited the use of the Jacobi method to instances where 
small matrices of order 40 x 40 or less are typically encountered or memory limita- 
tions prevent the use of more complex routines. Nevertheless, a large number of 
applications find the Jacobi method to be fully adequate. Furthermore, the use of 
Jacobi and modified Jacobi diagonalization routines will probably increase with the 
expanded use of minicomputers where storage limitations, rather than computation 
times, are of primary importance. It was, in fact, the above circumstances that 
prompted our development of the least-squares optimized threshold method. 

The standard Jacobi method [6] searches for the largest absolute off-diagonal 
element and performs a plane rotation which annihilates this element. Although this 
approach assures that a minimum number of rotations are used to achieve a given 
accuracy, the search is time consuming. Furthermore, the search algorithm, when 
programmed efficiently, requires more than half of the total diagonalization source 
code and two work arrays [7]. A simpler alternative is to operate on the off-diagonal 
elements in a systematic, predetermined order, annihilating those with absolute 
values larger than the desired threshold. This cyclical approach was originally 
proposed by Goldstine, Gregory, Forsythe, and Henrici [8, 91. This method, however, 
introduced considerable roundoff error. A modification introduced by Pope and 
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Tompkins [IO] to correct this problem used a decreasing sequence of threshold 
values such that only those off-diagonal elements with absolute values larger than the 
current threshold value initiated a rotation. These authors proved that the threshold 
method was convergent and demonstrated that the original Jacobi angle (rather than 
overrelaxed or underrelaxed angles) provided the most rapid convergence. Rutishauser 
proposed a more sophisticated threshold method as well as an algorithm for calculating 
the Jacobi rotational parameters that significantly reduces roundoff error [ll]. 
Although we have adopted Rutishauser’s roundoff error-reducing modifications, the 
threshold method presented here is from 15 to 25 % faster than Rutishauser’s method. 
Furthermore, our formalism serves to further reduce roundoff error by reducing the 
number of rotations necessary to diagonalize a given matrix. (The 30 x 30 matrix 
specified in Ref. [Ill provides a convenient example. The Rutishauser threshold 
method requires 2339 rotations to diagonalize this matrix, while the algorithm 
presented here requires only 1851 rotations to diagonalize this matrix to identical 
accuracy.) 

We present in this paper a threshold algorithm which has been optimized for the 
diagonalization of small matrices (20 x 20-40 x 40). The method is typically 
3CMO % faster than the most efficient Jacobi algorithm we could find [7] and requires 
roughly one-half the machine code. It is typically 20 % faster than previous threshold 
methods (see above). The salient features of our threshold algorithm include (a) an 
internally computed series of threshold values which optimize convergence, (b) an 
input parameter to simplify programmatic control of the accuracy of the eigenvectors, 
and an overall algorithm that is (c) optimized for both sparse and dense input matrices 
and (d) designed to minimize roundoff error when high accuracy is required while 
providing rapid convergence when low to medium accuracy is desired. Features (b) 
and (d) are particularly useful for self-consistent-field molecular orbital calculations 
where lower accuracy eigenvectors and eigenvalues are sufficient during early stages 
of the SCF iteraction, but where maximum accuracy is important during the final 
stages where the SCF process is near convergence (see Section 4). 

A word of caution is necessary before presenting the details of our algorithm. The 
optimized threshold method cures many, but not all, of the disadvantages of the 
standard Jacobi method. Eigenvectors are still calculated at an accuracy below that 
produced by most other diagonalization formalisms although our use of Rutishauser’s 
roundoff error modifications yields a significant improvement over the standard 
Jacobi procedures. Nevertheless, our experience indicates that for a typical 50 X 50 
matrix, the maximum guaranteed accuracy in the eigenvectors is two digits less than 
the number of significant digits carried in the calculation. The lost significance is 
due primarily to the roundoff error inherent in the iterative procedure. 

2. THE OPTIMIZED THRESHOLD ALGORITHM 

This section presents the basic algorithm of the optimized threshold method. The 
actual optimization process is discussed in Section 3, where the final parameters are 
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presented and our method is compared with conventional Jacobi routines. We assume 
that the reader is familiar with the standard Jacobi method. 

The following algorithm is presented in program flow sequence. The matrix, A, is 
to be diagonalized with the resulting eigenvalues to be formed along the diagonal of A 
with the eigenvectors in corresponding columns of U. In matrix notation, 

h = U+AU, (1) 

where A is a diagonal matrix of the eigenvalues. Operations are performed such that 
only the upper triangle of A is destroyed. 

The Algorithm 

(a) Initialize Variables. Assign n, (the optimum rotations per threshold) and 
the initial threshold parameters p(l), 0, and dp(l) (see Section 3). Adjoin an identity 
matrix in U for formation of the eigenvectors. The maximum threshold parameter, 
pmax , and the median absolute magnitude of the nonzero matrix elements in A, czj& , 
are both input parameters and are explained in Section 4. 

(b) Scan Of-diagonal Elements of A. Operate only on the upper triangle in 
sequence h2 , al,, ,..., (I~-~,~) and if absolute magnitude of the element, a$:), is 
greater than E(U) (the current threshold value), annihilate element via Jacobi rotation 
[sequences (c)-(f)]. Transfer to (g) upon completion of scan. 

(c) Determine Rotation Parameters [l 11. 

6 = ((p - a!“)pJf) 33 22 23 (2) 

tan 0 = sign @)/[I 6 I + (1 + 82)1/2], (3) 

cos 19 = [I + (tan 8)2]-1/2, (4) 

sin e = cos e tan 13, (5) 

tan ($6) = sin e/(1 + cos 0). (6) 

The function “sign (6)” returns + 1 for positive or zero 6, - 1 for negative 6. 
(d) Perform Plane Rotation of Matrix. Annihilate off-diagonal element, aij , 

using Rutishauser’s algorithm [I 11. 

&+1) 
Ef = 0, (7) 

(kfl) 
aii 

= a!!’ - (tan 0) a!!) 
ZE 23 9 @I 

J’e+1) 
33 

= a!!’ + (tan 0) a!? 
33 Z? 9 (9 

&+1) zzz &’ - sin &7,‘:’ + a$) tan(#)], (10) 
a!k+l) 31 = ai + sin @I!‘) El - aj(:) tan(@)]. (11) 

The manipulations in Eqs. (10) and (11) are performed over all values of I (f i, #j) 
from 1 to N such that only the upper diagonal elements of A are modified [4]. 
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(e) Calculate Eigenuectors. 

u,(~+‘) = u$’ - sin B[z$’ + u,‘$ tan(@)], (12) 

u,(F+‘) = z$’ + sin e[z$’ - ~1’5’ tan(@)]. (13) 

Equations (12) and (13) are calculated for all values of I from 1 to N. The eigenvectors 
are formed in columns with the appropriate eigenvalue in the corresponding diagonal 
of A. (Note that pseudo-ordering is not performed and that the eigenvalues and eigen- 
vectors must be ordered upon completion of the diagonalization procedure.) 

(f) Update Counter and Branch. 

n”“’ z n(u) + 1. (14) 

If all off-diagonal elements of A have not been scanned, return to (b) and continue 
scan at next sequential off-diagonal element. If aij is last (sequential) off-diagonal 
(aN--I,N), continue to next step (g). 

(g) Manipulate Threshold Parameters. If theJirst scan of the matrix at a given 
threshold has initiated n(u) rotations such that n(u) < n, , increase the delta threshold 
parameter, dp (Eq. (15)). 

~Ip(fi+li = 2 LIP(U) (first scan at E(U) and rW < n,). (15) 

If the number of rotations during any scan (irrespective of the number of previous 
scans at present threshold) is greater than n, , retain present threshold [&‘+l) = +I, 
set n(@+l) to zero, and reinitiate scan at (b). Otherwise, decrease threshold by increasing 
the value of p. 

P (u-1-1) = p(w) + &/Jp(uL), (16) 

&+l) = a;&g[6-~(u+l) + 0.2(p'w+l')-6]. (17) 

If pcu+l) is larger than pmax, the maximum precision threshold parameter, exit 
diagonalization routine. Otherwise, set n (u+l) to zero and reinitiate scan at (b). Note 
that dp is a positive number and that the threshold, E, decreases as p, the threshold 
parameter, increases. The rationale behind Eq. (17) is discussed in Section 4. 

3. OPTIMIZATION OF PARAMETERS 

Prior to performing an optimization it was necessary to determine the dependencies 
of the threshold parameters with respect to the order of the matrix, iV. The following 
relationships were obtained after the trial-and-error assessment of a number of 
theoretically reasonable possibilities: 

p(l) = a 

dp’l’ = &‘, 

nt = c + dN2, 

(18) 

(19) 

(20) 
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where a, b, c, and dare the parameters to be optimized. The initial threshold param- 
eter, p(l), will determine how many matrix rotations will occur at the first threshold 
level. As the matrix size increases, a given value of p(l) will generally increase the 
number of such rotations with an N2 dependence. This is what was desired (see 
discussion of n,) and hence p(l) is defined independent of N. Ap must decrease with 
increasing N to prevent “overshooting” the desired number of rotations per threshold. 
The l/N dependence was obtained by trial and error. The most important parameter, 
nt , determines the canonical number of rotations that are to occur at a given threshold 
setting. Note that the algorithm in Section 2 adjusts Ap(e) such that LZ(@) approaches n, . 
A high value of nt will minimize scan time, but increase the total number of rotations 
required to diagonalize the matrix. This will not only increase calculation time but 
roundoff error as well. Too low a value for n, will cause the routine to spend too 
much time in scanning the matrix and will, at low enough values, simply emulate the 
standard Jacobi method. We determined that n, should be proportional to the number 
of off-diagonal elements and therefore display an N2 dependence. 

The parameters, a, b, c, and d, appearing in Eqs. (IS)-(20) were simultaneously 
optimized for a set of four matrices consisting of two sparse “Htickel” matrices and 
two dense “random” matrices of order N = 20 and N = 40. Diagonalization time 
was the variable to be optimized, and our procedure consisted of an interpolated 
gradient search over selected ranges in a-d. Trial and error quickly determined the 
appropriate ranges to study and the possibilities of false minima repeatedly checked. 
The two sparse matrices were defined by the Kronecker delta operator, aij = 8i,jil , 
and represent the Hiickel approximation to linear polyenes. Matrices of similar charac- 
ter are frequently encountered in simple, restricted basis set molecular orbital calcula- 
tions. The two dense matrices were calculated using a pseudorandom number generator 
with all elements restricted to the range f 1. (These matrices are available upon 
request.) Because of the nature of diagonalization by rotation, the computation times 
were very similar for sparse and dense matrices with the diagonalization of the former 
generally 5-15 % faster than the latter. The parameters were optimized to minimize 
the diagonalization time for each matrix and upon averaging gave the following 
results. 

p”’ = 0.91, (21) 

A P (1) = 2.&j?1 9 (22) 

n, = 5.7 -+ 0.009N2. (23) 

The “uncertainties” in each parameter are large, but the difference in diagonalization 
time when using the optimized versus the averaged parameters was rarely more than 
8 %. Consequently, the optimized threshold method is not overly sensitive to our 
choice of parameters with the exception that gross changes in Eqs. (21)-(23) will 
produce significant deterioration in efficiency. 

The optimized threshold method using the above parametrization is compared to an 
efficient standard Jacobi method in Figs. 1 and 2. The Jacobi method, written by 
Corbato and Merwin [7], uses a very efficient scan algorithm requiring only N 
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FIG. 1. Comparison of the diagonalization times of sparse (“Hiickel”) matrices using the standard 
Jacobi (0) and the optimized threshold (A) methods. Least-squares regression power curves are 
shown and yield the equations t(msec) = 1 .55N2.81 (Jacobi) and t = 1.86Na.78 (optimized threshold). 
Calculations were done in Fortran on an HP-3000 minicomputer. 

comparisons per search. Calculations were performed using identical “final thresholds” 
and the pseudo-ordering feature in Corbato and Merwin’s routine was removed to 
increase the Jacobi method’s computation speed. In the range N = 20 to N = 60, 
the optimized threshold method decreased computation time by 32-40 % over the 
Jacobi method. The two methods are effectively identical in execution time for N < 6. 
One reviewer of this manuscript suggested that the simple power curve regressions 
shown in Figs. 1 and 2 should be replaced with the equation aN3 + bNk where k N 2. 
Since there are N2 independent off-diagonal elements each requiring N operations to 
annihilate, the reviewer noted that both the Jacobi and threshold methods should 
display a N3 component in their diagonalization time. Regression curves based on the 
above equation were calculated and although they consistently provided an improved 
fit (r2 was always greater than 0.996), the results were useful only for the sparse matrices 
(Fig. 1) where the Jacobi method diagonalization time (milliseconds) fits the equation 
0.94N3 + 7.7N2, while the threshold method fits the equation 0.62N3 + 2.5N2. 
However, the regression variable b turned out to be negative for the random matrices 
which is not very illustrative. Furthermore, the above regression equations might 
incorrectly suggest that the threshold method is faster both in terms of choosing 
elements to rotate (the N2 component) and in performing the necessary rotations 
(the N3 component). In fact, the enhanced speed of the threshold method is due solely 
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FIG. 2. Comparison of the diagonalization times of dense (random) matrices using the standard 
Jacobi (0) and the optimized threshold (a) methods. Least-squares regression power curves are 
shown and yield the equations t = 1.59N MI (Jacobi) and t = 2.08Ne.‘l (threshold). 

to its efficient search algorithm since the time required to perform an individual 
rotation is essentially identical in the two methods, and the threshold method invariably 
requires more rotations. 

Diagonalization times using Rutishauser’s threshold method are not shown in 
Figs. 1 and 2. Sample calculations indicate that the above procedure requires diagonali- 
zation times roughly intermediate to those observed for the optimized threshold 
method and the Jacobi method of Ref. [7]. 

4. COMMENTS ON APPLICATIONS 

The optimized threshold method was designed not only for speed but also to provide 
a simple and straightforward means of manipulating the precision with which the 
eigenvalues and eigenvectors are calculated. The input parameters, ggkg and pmax , 
are used to control precision and are discussed in this section. 

CZ~& is defined as the median of the absolute magnitudes of the nonzero matrix 
elements in A. In practice, this value need not be accurately assigned and an order-of- 
magnitude estimate is sufficient. 

pmaX determines the final threshold value. Equation (17) was derived so that 
aprnax would approximately equal the number of significant digits of eigenvector 
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precision to the right of the decimal point. The limitations imposed by roundoff error 
must be taken into account, however. It is a common fallacy of many Jacobi and 
modified Jacobi routines to continue matrix rotations after the off-diagonal elements 
have decreased in magnitude by a number, the common logarithm of which is greater 
than the number of significant digits carried in the calculation. In most such instances, 
the resulting eigenvectors have actually deteriorated during the subsequent rotations 
because the roundoff error is larger than the calculated rotational correction. Conse- 
quently, there is little to be gained by setting pmag larger than twice the number of 
significant digits carried in the computation. The eigenvalues are calculated to an 
accuracy greater than that of the eigenvectors. Consequently, the number of significant 
digits in the eigenvalues is always larger than &,,, . 

A useful application of pmax can be found in self-consistent-field molecular orbital 
calculations where a number of iterations, each involving a matrix diagonalization, 
are encountered in the course of reaching “self-consistence.” The number of such 
iterations is dependent upon both the formalism and the wavefunction, but an 
empirical rule of thumb is to increase pmaX by one for each SCF iteration starting at 
5 and stopping incrementation when p max reaches the roundoff limit (see above 
paragraph). If self-consistency is obtained prior to this condition, pmax is immediately 
set to its highest value and iterations are continued to verify self-consistency. This 
technique has reduced the computation time required for INDO-AFAOS-SCF-MO 
[12] calculations by 5-12 % over and above the 30-40 % reduction observed by 
replacing the efficient Jacobi routine [7] with our optimized threshold routine. 
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